# Green’s Theorem

Green’s theorem is a fundamental result in vector calculus that relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is named after the British mathematician George Green.

Green’s theorem states that for a continuously differentiable vector field `F(x, y) = P(x, y)i + Q(x, y)j`

defined over a region D and its boundary C, the following relationship holds:

`∮`

_{C} F · dr = ∬_{D} (Q_{x} - P_{y}) dA

where ∮_{C} F · dr is the line integral of the vector field F along the curve C, ∬_{D} (Q_{x} – P_{y}) dA is the double integral of the scalar field (Q_{x} – P_{y}) over the region D, and P_{y} and Q_{x} denote the partial derivatives of P and Q with respect to y and x, respectively.

Green’s theorem has various applications in mathematics, physics, and engineering, such as calculating the circulation and flux of a vector field, finding the area of a region in the plane, and verifying the Stokes’ theorem and the divergence theorem in certain cases.

Pingback: What is a Vector Field? - Goodman Prep Tutoring